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Abstract 

The estimation of mixing matrix is a key step to solve the problem of blind signal separation. The existing algorithm can only estimate 

the matrix of well-determined, over-determined and under-determined in condition of sparse source. Scaling and permutation 

ambiguities lie in both factor matrix of tensor Parallel factors decomposition and mixing matrix in blind signal separation. With this 

property, the estimation of mixing matrix can be transformed into tensor parallel factors decomposition of observed signal’s statistic. 

The decomposition can be realized by the method of alternating least squares. The theoretical analysis and simulations show that the 

method proposed in this paper is an efficient algorithm to estimate well-determined, over-determined and under-determined mixing 
matrix. 
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1 Introduction 

 

Blind signal separation is an area of great interest due to 

its ability to separate multiple independent sources from 

array observations without requiring a priori knowledge of 

the location of sources or the geometry of sensor array [1]. 

Such flexibility has made BSS a potential technique in a 

variety of applications, such as multitalker speech 

separation from multimicrophone audio recordings, 

elimination of inter user interference in wireless 

communications and biomedical signals processing like 

ECG and EEG. 

There are two steps to estimate mixture matrix. First, 

estimate the mixture matrix. Second, recover source 

signals. The accuracy of estimated mixture matrix 

dramatically impact the result of BSS. There are many 

algorithms, such as fast approximate joint diagonalization 

(FAJD) [2], alternating columns diagonal centres (ACDC) 

[3], etc., that can solve well-determined, over-determined 

BSS problem. But, these algorithms are not suitable for 

estimating under-determined mixture matrix. Under-

determined means the numbers of unknown variable 

exceed the equations and the matrix to be estimated is 

“short and fat” .To solve this problem, it is regularly 

assumed that the source signals are sparse in time domain 

or transform domain [4]. In this situation, for the clustering 

characteristic of sparse mixing signals, scatter diagram of 

the observed data assembled in direction vector of mixing 

matrix, and under-determined mixing matrix could be 

obtained by local maximization algorithm. This method is 

effective for separating time domain sparse signal, such as 

audio signals. But it is not applicable to most Sub-

Gaussian signals that are not satisfy the hypothesis of 
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sparseness. Delathauwer propose the method of tensor 

decomposition to estimate the under-determined mixture 

matrix, that need not the hypothesis of sparseness of source 

signals [5]. It is a new idea for under-determined BSS. 

In this paper, the problem of estimation mixture matrix 

of well-determined, super-determined, under-determined 

is addressed by parallel factors decomposition of tensor, 

and the parallel factors decomposition is obtained by 

the method of alternating least squares. 
 

2 Relation between BSS and Tensor’s Parallel factors 

decomposition 

 

2.1 MODEL OF BSS 

 

The mixing model of BSS is below 

    ( )t t t x As n , (1) 

where   Jt x  represent mixture signal vector of J  

dimension,   Rt s  is source signal vector of R  

dimension whose component is independent each other, 

( ) Jt n indicate additive noise which is independent with 

source signal, 
J RA  express a full row rank matrix 

which is to be identified. 

The identification of A  is first step to recover source 

signals. There are inherent scaling and permutation 

uncertainty of column in estimation matrix A . The 

estimation of A  writes Â , then these two uncertainty 

expressed as follow: 

ˆA APD , (2) 
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where, P  represent R R  permutation matrix, D  

indicate R R  non-singular diagonal matrix. 
 

2.2 TENSOR’S PARALLEL FACTORS 

DECOMPOSITION AND ITS ESSENCE 

UNIQUENESS CONDITION 

 

A tensor is a multidimensional array, and it is a higher 

order extensions of the matrix. There are two forms in 

tensor decompositions: parallel factors decomposition and 

tucker decomposition. Tensor decomposition is widely 

used in psychometrics and chemo metrics. For its powerful 

data analysis functions, during the last decades, researcher 

has begun to apply it in information area, such as signal 

processing, machine vision, data mining, etc. 

The identification of mixing matrix can be transformed 

into the tensor’s can conical decomposition. For 

elaborating this method, introduce the conception of can 

conical decomposition. 

Definition I [6]. Outer product. The outer product of 

three vectors Mu , Nv , Pw  is 
M N P Z  which is a three order tensor. It writes 

Z u v w , where each element of Z  can obtained by 

1,..., ;

1,..., ; 1,...,

mnp m n pz u v w m M

n N p P

 

 
. (3) 

Definition II [6]. Rank One Tensor. A three order 

tensor M N P Z  is rank one if it can be written as the 

outer product of three vectors, i.e. 

Z u v w . (4) 

Definition III [6]. Tensor’s rank. Every tensor can be 

expressed as a sum of rank one tensors. The rank of a 

general tensor Y  is defined to be the minimum number 

of rank one tensors with which it is possible to express Y  

as a sum. 

Definition IV [6]. Parallel factors decomposition. The 

definition of 
M N P Y  parallel factors decomposition 

is 

( )

1

, ,

rank

i i i

i 

 
Y

Y u v w U V W , (5) 

where, M

i u , N

i v , P

i w ,  rank Y  is the 

rank of tensor Y , writes  I rank Y ; 

 1 2, ,..., IU u u u ,  1 2, ,..., IV v v v ,

 1 2, ,..., IW w w w  are factor matrix of parallel factors 

decomposition. 

Below we discuss the essence uniqueness condition of 

Y  parallel factors decomposition. Apparently, there are 

inherent scaling and permutation uncertainty in factor 

matrix. If  1 1i i i i I       stands, then 

     
1

I

i i i i i i

i

  


Y u v w  work. This is called 

scaling uncertainty. Supposing P  is a I I  

permutation matrix, then , , Y U V W  

, ,UP VP WP  work, and this is called permutation 

uncertainty. If there are only scaling and permutation 

indeterminacy in factor matrix of the tensor, then parallel 

factors decomposition is called uniqueness. 

In conclusion, there are only scaling and permutation 

indeterminacy both in the factor matrix of parallel factors 

decomposition and the estimated mixture matrix of BSS. 

This common is theoretical basis for transforming the 

problem of estimating the mixture matrix into tensor’s 

parallel factors decomposition. 

 

3 Tensor method to estimate mixture matrix 

 

3.1 MODEL TRANSFORMATION 

 

The second-order correlation matrix of mixture signals in 

BSS model (1) is  

    1,...,k k kE t t k K      C x x AD A , (6) 

where    k kE t t    D s s  is a diagonal matrix. To 

confirm robustness of the estimation, it is supposed that 

K R . Assemble a three order tensor with matrix 
J J

k

C  as follows 

J J K C :    kijk ij
C C : , 1,...,i j J ; 1,...,k K . (7) 

Define matrix K RD  as follows 

   kkr rr
D D , 1,...,k K , 1,...,r R . (8) 

Then tensor C  can be decomposed as 

1

, ,
R

r r r

r

 a a d AC A D , (9) 

where ra  and rd are r-th column of A  and D , 

respectively. Equation (9) is the parallel factors 

decomposition of tensor C . 

If the parallel factors decomposition of C  is unique, 

then mixture matrix of BSS can be estimated with it. There 

provided a sufficient condition that parallel factors 

decomposition exists solely in literature [5]. From the 

sufficient condition, when the number of receiving sensor 

is constant, the maximum of source signal that can 

guarantee uniqueness of parallel factors decomposition, 

can be deduced. 

 
TABLE 1 Relation between sensor number J and maximum of source 
number Rmax allowed 

J 2 3 5 8 10 15 18 23 

Rmax 2 4 10 26 41 92 132 216 
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From Table 1 we can see that, fixing the number of 

receiving sensor J, so long as the number of source signal 

satisfies maxR R , the method of parallel factors 

decomposition can be used to estimate mixture matrix. So, 

tensor method can estimate the mixture matrix of well-

determined, super-determined and under-determined. 

 

4 Alternating least squares (ALS) algorithm to realize 

parallel factors decomposition 

 

In this section, we realize parallel factors decomposition 

by minimizing the cost function. Choose function follows 

as 

 
2

1

,
R

r r r

r F

f


 A a aCD d . (10) 

For this multi-variable optimization problem, cyclic 

minimizing is a common method. The thought of this 

method is, partitioning variable set into several subsets, 

utilize optimization algorithm to calculate one of subsets 

in every step, and regard other subsets as constant, repeat 

this process until cost function is convergence. 

In accordance with the Equation (10), we adopt ALS 

algorithm to realize cyclic minimizing. 

The first, second and third slice matrix of tensor C  

are respectively 

, 1,..., ;J K

i i J E  (11) 

,K J

j

F 1,..., ;j J  (12) 

, 1,J J

k k G ..., K . (13) 

Combining Equation (9) and symmetry of tensor C , 

we can deduce 

( ) , 1,...,k kdiag k K G A D A ; (14) 

( ) , 1,...,i idiag i J E A A D ; (15) 

( ) , 1,...,j jdiag j J F D A A . (16) 

Equation (14) can be rewritten as  

1 1

2 2

( )

( )

( )K K

diag

diag

diag



   
   
   
   
   
   

G A D

G A D
A

G A D

. (17) 

From Equation (17), least square estimation of mixing 

matrix A  can be inferred as 

†

1 1

2 2

( )

( )
ˆ

( )K K

diag

diag

diag



   
   
   
   
   
   

A D G

A D G
A

A D G

, (18) 

where symbol “ † ” denotes moore-penrose inverse matrix. 

Similarly, least square estimation of D  and A  can be 

obtained respectively as 
†

1 1

2 2

( )

( )
ˆ

( )J J

diag

diag

diag



   
   
   
   
   
   

A A E

A A E
D

A A E

, (19) 

†

1 1

2 2

( )

( )
ˆ

( )J J

diag

diag

diag



   
   
   
   
   
   

D A F

D A F
A

D A F

. (20) 

Random initialize matrix A  and D , then update 

Â  and D̂  according to Equations (18), (19) and (20). In 

process of updating, A  and D  on the right side of 

equation are replaced by Â  and D̂  that are obtained by 

last step of estimation. 

 

5 Simulation results 

 

In this section, we will compare the performance of our 

proposed method with the other algorithms presented in 

paper [2, 3]. We mark algorithm in this paper, in paper [2], 

[3] respectively as GTCD, FAJD and ACDC. 

To measure the difference between the mixing matrix 

and the estimated matrix, the performance index, called the 

relative error (REER), is adopted. The REER has been 

frequently used in the evaluation in area of BSS [7]. The 

REER is given by 

F

F

ˆ

EREER

  
  

  

A A

A
, (21) 

where, Â  is the estimation of mixing matrix A , under 

the condition that their columns are unitized and are 

eliminated permutation indeterminacy. For the 

convenience of comparing, transform the REER into 

decibel (dB) using equation 1010log ( )REER . It is evident 

that, lower the decibel of relative error is, precise the 

estimation of mixing matrix is. 

The second-order correlation matrices are generated by 

Equation (6), where the mixing matrix A  is M N , 

diagonal matrix kD  is N N , and their elements are 

random generated with standard normal distribution in 

each experiment. These matrices are assembled into third 

order tensor M M K C  following Equation (7). 

Experiments 1. In this experiment, we compare the 

performance of estimation well-determined matrix 

between the GTCD algorithm and FAJD algorithm based 

on non-unitary joint diagonalization. Assume the number 

of correlation function 100K  . The iteration stop 

condition is set as 



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 158-162 Zhang Yan-liang, Li Geng 

161 

 

       6

1

' ' ' ' ' 'ˆ ˆ ˆˆ ˆ ˆ, , / , 10
n n n

f f f



 A D A D A D  (22) 

where the definition of f  function follows Equation (10). 

Note: 1) The unit of Runtime is seconds. 2) REER is 

measured with dB. The same below. 

Estimate the mixing matrix of different M  using 

algorithm GTCD and FAJD respectively, and each 

scenario is repeated 100 times independently. The mean of 

REER and run time in each case are presented in Table 2. 

The table illustrates that the accuracy of GTCD is better 

than that of FAJD. Except the low dimension case, such as 

4M N  , 6M N  , the run time of FAJD 

outnumber GTCD. And the run time of FAJD rapid 

increase with the dimension augment of mixing matrix. 

Experiments 2. In this experiment, we compare the 

performance of estimation super-determined matrix 

between the GTCD algorithm and ACDC algorithm, based 

on non-unitary joint diagonalization. Set different value of 

M  and N  satisfying M N  and independently 

repeat 100 times. The mean of REER and run time in each 

case are presented in Table 3. As can be seen from the table 

that, in each case, the precision of GTCD is better than that 

of ACDC and the run time of ACDC outnumber TCD. 

Similar to experiment 1, the run time of FAJD rapid 

increase with the dimension augment of mixing matrix.  

 

TABLE 2 Accuracy and runtime of two algorithms in well-determined case 

 
M=6, N=6 M=10, N=10 M=16, N=16 M=20, N=20 M=40, N=40 

REER Runtime REER Runtime REER Runtime REER Runtime REER Runtime 

GTCD -155.5 1.2034 -156.3 1.2655 -161.8 1.4023 -156.5 1.8284 -155.1 7.4014 

FAJD -95.4 0.1764 -92.6 0.7216 -96.2 2.7487 -82.2 10.1810 -11.0 423.3555 

 
TABLE 3 Accuracy and runtime of two algorithms in super-determined case 

 
M=6, N=4 M=10, N=6 M=16, N=10 M=20, N=12 M=40, N=30 

REER Runtime REER Runtime REER Runtime REER Runtime REER Runtime 

GTCD -345.4 0.3042 -339.4 0.3770 -321.6 0.5089 -330.9 0.6537 -306.7 3.0930 

ACDC -84.4 1.4134 -95.9 2.4805 -100.9 7.8012 -107.1 13.9125 -121.91 158.4669 

 
TABLE 4 Accuracy and runtime of GTCD in under-determined case 

 M=4, N=5 M=5, N=6 M=6, N=8 M=8, N=10 M=10, N=16 M=15, N=20 M=18, N=30 M=23, N=40 

REER -155.1 -149.4 -146.5 -144.2 -140.0 -134.6 -111.3 -72.6 

Runtime 1.4748 1.5918 2.5185 3.0151 4.2947 5.4100 9.1283 15.6118 

 

Experiments 3. The performance of GTCD algorithm 

for estimating under-determined mixing matrix is analysed 

in this experiment. Assume different value of M  and 

N  and independently repeat 100 times in each case. The 

mean of REER and run time are illustrate in Table 4. It is 

indicated that the GTCD can address the problem of under-

determined BSS, but the ACDC and FAJD cannot resolve 

this problem. 

 

6 Conclusion 

 

In this paper, the estimation of mixing matrix is 

transformed into the problem of tensor parallel factors 

decomposition. Tensor decomposition is achieved by ALS 

algorithm. The proposed method not only can estimate the 

mixing matrix of well-determined and super-determined, 

but also can address under-determined matrix. The 

experiments show that the accuracy and the run time of our 

algorithm is improver than that of the existing algorithm 

based on non-unitary joint diagonalization. 
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